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Abstract Texture classification is an important application
in image processing and pattern recognition such as detection
of defects on the materials and diseases from the medical
images. This paper presents the performance of wave atom
transform on texture classification. Wave atom transform
is a new multi-resolution technique that not only captures
the coherence of the pattern along the oscillations, but also
the pattern across the oscillations. The classification is done
using a wave atom–transformed features reduced by sin-
gular value decomposition and a support vector machine.
Experimental results are presented to demonstrate the effec-
tiveness of this approach on Brodatz database, Alzheimer’s
Disease Neuro Imaging database for Alzheimer’s disease
classification and liver computed tomography images for
tumor classification. The experimental results demonstrate
that the proposed approach gives a percent correct classifica-
tion of 97.29 % on Brodatz database, classification accuracy
of 94 % on Alzheimer’s Disease Neuro Imaging database for
Alzheimer’s disease diagnosis and 93.3 % on liver computed
tomography images for tumor classification.
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1 Introduction

Texture analysis is an important issue with applications rang-
ing from remote sensing and crop classification to object-
based image coding and tissue recognition in medical images.
The primary objective of different methods presented is
the rotation and gray-scale invariant texture analysis. As a
fundamental basis for all texture-related applications, tex-
ture analysis seeks to derive a general, efficient, and com-
pact quantitative description of the textures so that various
mathematical operations can be used to alter, compare, and
transform them. Most available texture analysis algorithms
involve extracting the features and deriving an image coding
scheme for representing the selected features. These algo-
rithms may differ in the choice of features and the way
of their representation. For example, a statistical approach
[1] describes a texture through image signal statistics that
reflect the non-deterministic properties of spatial distribu-
tion of image signals, and Markov random field models [2]
consider spatial interactions over relatively small neighbor-
hoods. Structural approaches [3] are based on regular or
semi-regular placements of textural primitives. In the case
of observable or visual textures, it is usually quite difficult to
extract the primitives and their placements. These approaches
are suitable only for highly regular deterministic textures.
To reduce these problems, signal processing methods such
as spatial domain filtering, frequency domain filtering and
spatial-frequency domain filtering were proposed by many
researchers [4,5].

The weakness of spatial and frequency domain filtering is
that the image is analyzed at one single scale. To overcome
these limitations, multi-resolution techniques were used
[6,7]. In multi-resolution-based methods, sub-band energy
is the most commonly used feature for texture classification
problems. Hidden Markov models [8], generalized Gaussian
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density-based model [9], histogram-based model [10], and
hybrid IMM/SVM-based model [11] are some of the wave-
let domain models proposed for texture classification. They
require large number of features and training samples even
for a moderate database. To overcome these problems, a tex-
ture classification method based on wavelet transformation
and singular value decomposition (SVD) is proposed [12].
Wavelet in two dimensions has limited ability in capturing
directional information. In this paper, we propose an alternate
method using wave atom transform [13], which is a multi-res-
olution technique, has the ability to adapt to arbitrary local
directions of pattern, and to sparsely represent anisotropic
patterns aligned with the axes.

The paper is organized as follows. Section 2 describes the
theory of wave atom transform and a brief about SVD and
support vector machine (SVM) used in this work. Section 3
deals with the experiments performed on synthetic images,
magnetic resonance images (MRI) images, and computed
tomography (CT) images with their results. Section 4 ends
with the conclusion.

2 Theory

2.1 Wave atom

Demanet and Ying [13] introduced so-called wave atoms that
can be seen as a variant of 2-D wavelet packets and obey the
parabolic scaling of curvelets wavelength ∼ (diameter)2.
Oscillatory functions or oriented textures (e.g., fingerprint,
seismic profile, engineering surfaces) have a significantly
sparser expansion in wave atoms than in other fixed stan-
dard representations like Gabor filters, wavelets, and curv-
elets.

Wave atoms have the ability to adapt to arbitrary local
directions of a pattern, that is, warping. In comparison with
curvelets, wave atoms not only capture the coherence of the
pattern along the oscillations, but also the pattern across the
oscillations. In the following, we shortly summarize the wave
atom transform as recently suggested in [13].

Consider a 1-D family of wave packets ψ j
m,n(x), j ≥

0,m ≥ 0, n ∈ N , centered in frequency around ±ω j,m =
±π2 j m with c12 j ≤ m ≤ c22 j (where c1 < c2 are positive
constants) and centered in space around x j,n = 2− j n. For
that purpose, let g be a real-valued C∞bump function with
compact support in [−7π/6, 5π/6] such that for |ω| ≤ π/3
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where εm = (−1)m and αm = (π/2)(m + (1/2)). The prop-
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The transform W A : L2(R) → l2(Z) maps a function u
onto a sequence of wave atom coefficients

c j,m,n =
∞∫

−∞
u(x)ψ j

m,n(x)dx

= 1

2π

∞∫

−∞
e−i2− j nωψ̂

j
m(ω)û(ω)dω (6)

In the 2-D case, Let μ = ( j,m, n), where m = (m1,m2)

and n = (n1, n2). We consider

ϕ+
μ (x1, x2) := ψ

j
m1,n1(x1)ψ

j
m2,n2 (x2) (7)

and the Hilbert transformed wavelet packets

ϕ−
μ (x1, x2) := Hψ j

m1,n1(x1)Hψ
j

m2,n2 (x2) (8)

where for a decomposition
ψ̂m,n(ω) = ψ̂

j
m,n,+(ω) + iψ̂ j

m,n,−(ω) with ψ̂ j
m,n,−(ω) =

ψ̂
j

m,n,+(ω) and the Hilbert transform is defined by

H ψ̂ j
m,n(ω) = −iψ̂ j

m,n,+(ω)+ iψ̂ j
m,n,−(ω) (9)

(Note that the above decomposition of ψ̂m,n is possible since
ψm,n is real-valued). A recombination

ϕ(1)μ = ϕ+
μ + ϕ−

μ

2
, ϕ(2)μ = ϕ−

μ + ϕ−
μ

2
(10)

provides basis functions with two bumps in the frequency
plane being symmetric with respect to the origin. Together,
ϕ
(1)
μ and ϕ(2)μ form a wave atom frame, and the wave atom

coefficients c(1)μ , c(2)μ are the scalar products of u with ϕ(1)μ
and ϕ(2)μ .

Wave atoms have parabolic scaling in the sense that the
period of the oscillations of each wave atom (wavelength) is
linked to the square of the essential support (diameter). Also
they are simultaneous directional and multiscale, that is, the
wave atom is medium directional and scaling compared to the
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poor directional and good scaling wavelet, good directional
and poor scaling Gabor, good directional and good scaling
Ridgelets and medium directional and good scaling Curv-
elet. The medium directionality and scaling is better [13] for
texture classification. Due to these properties, the wave atom
is considered for texture classification in this paper.

In [13], a discretization of this transform is described for
the 1-D case, as well as an extension to two dimensions. The
algorithm is based on the fast Fourier transform and a wrap-
ping trick. The implementation software was downloaded
from the web address http://www.waveatom.org/software.
html.

2.2 Singular value decomposition

SVD is a very powerful tool, mainly used for dimensionality
reduction. Since the number of transformed coefficients is
large, computation cost is high. If SVD is applied on trans-
formed coefficients, the number of resulting singular values
is less than the number of transformed coefficients. We have
found that the distribution of singular values of transformed
coefficients varies vastly from texture to texture. This implies
that distribution of the singular values possesses good dis-
crimination characteristics.

Let A be the transformation coefficient matrix. If SVD is
applied on A of sizeP × Q, such that

A = U	V T (11)

Here, U is a P × Q orthogonal matrix whose columns are
the eigenvectors of AAT , V is a Q × Q orthogonal matrix
whose columns are the eigenvectors of AT A, and 	 is a
Q × Q diagonal matrix with non-negative diagonal elements
in decreasing order of magnitudes whose entries (the “singu-
lar values”) are the square roots of the corresponding eigen-
values of AAT .

2.3 Support vector machines

SVM is used for classification because of its powerful pattern
classification capability [14]. An important advantage of the
SVMs is that it is based on the principle of structural risk min-
imization. Besides, unlike other pattern recognition methods,
SVMs do not depend explicitly on the dimensionality of the
problem.

SVM finds the hyperplane that causes the largest separa-
tion between the decision function values for the borderline
of the two classes. Mathematically, this hyperplane can be
found by minimizing the cost function:

J (w) = wTw = ‖w‖2 (12)

Kernel representation offers an alternative solution by pro-
jecting the data into a high dimensional feature space to

Fig. 1 First row shows two different textures from Brodatz data set
and second row shows corresponding wave atom transform coefficients

increase the computational power of the linear learning
machines. A kernel is a function k, such that for all x, z ∈ X

k(x, z) = 〈ϕ(x), ϕ(z)〉 (13)

where ϕ is a mapping from X to (an inner product) feature
space F. In this study, RBF kernel is used for classification.
The main advantage of RBF kernel is their localized and
finite responses.

3 Results and discussions

The performance of the wave atom in texture classification
is analyzed on Brodatz database texture images, ADNI data-
base for Alzheimer’s disease and liver tumor classification
on CT images.

3.1 Brodatz database texture images

Here Brodatz texture database [15] has been used as it is
widely used for evaluating texture classification algorithms.
Brodatz database consists of both homogeneous and non-
homogeneous textures. The entire collection of 111 textures
in Brodatz texture database is considered for training and test-
ing phases. Each 512×512 images are divided into sixty-four,
64 × 64 non-overlapping sub-images. For training phase,
one sub-image is randomly taken from each texture samples
and for testing phase another sub-image is randomly taken
from each texture samples. So a total of 111 texture sam-
ples are available for training and another 111 for testing.
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Fig. 2 SVD distribution and
variance of first five SVD of D1
and D3 textures
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The wave atom–transformed coefficients are determined for
all samples, and SVD is applied on all transformed coef-
ficients. Figure 1 shows two texture samples from Brodatz
texture database and its wave atom–transformed coefficients.
The SVD is applied on the wave atom transform coefficients
to reduce the dimension. The distribution of SVD and the
variance of first five SVD of D1 and D3 textures are given
in Fig. 2. This shows that the variance of first five SVD
is between 50 and 90 % for all textures. So from the SVD
matrix, first five values are considered as the texture features
for classification. In the training phase, SVD values for all
sub-images are stored in the database. In the testing phase, the
feature vector derived from the unknown image is compared
with the feature vectors in the database using the distance
vector formula, given in Eq. (14).

D(i) =
p∑

j=1

abs
[

f j (x)− f j (i)
]

(14)

where P is the total number of features used, i = 1 to Q, (Q
is the number of images in the database), f j (x) represents
the j th feature of unknown texture image (x) and f j (i) rep-
resents the j th feature of texture belonging to i th texture. In
classification, the unknown texture is assigned to nth texture
if D(n) < D(i) for all i ; i not equal to n.

The percent correct classification is calculated using the
Eq. (15).

G(%) = Ccorr

M
× 100 % (15)

where, Ccorr is the number of sub-images correctly classified
and M is the total number of sub-images, derived from each
texture image. In this method, we could be able to achieve
the percent correct classification of 97.29 %, that is, out of
111 textures 108 were correctly classified and 3 were mis-
classified. Among 3 misclassified textures, 2 belongs to non-
homogeneous and one belongs to homogeneous. Due to the
close resemblance of textures, D23 and D27, D32 and D33,
D3 and D22 were misclassified each other.

This method is also compared with the texture features
taken through wavelet transform, gray level co-occurrence
matrix (GLCM) and circular Gabor filter features. For wave-
let-based texture features, 2 level decomposition and db4
wavelet basis function are used. From the available 35 tex-
ture features, 5 best features were selected using SVD. The

percent correct classification for this method is 95.49 %. For
GLCM-based classification, 5 best features were selected
from the available 22 features using SVD. The percent correct
classification for this method is 94.59 %. For circular Gabor
filter-based classification, four circularly symmetric Gabor
filter with center frequencies 2.00, 3.17, 5.04, and 8.00 are
employed. The averaged response magnitude of each filtered
image is utilized as one of the features. The feature vector
has four dimensions. The percent correct classification for
this method is 92.83 %.

3.2 Medical applications

The problem of Alzheimer’s disease classification from MRI
and liver tumor classification from CT images are chosen as
specific applications of the texture classification is discussed
herein to emphasize the effectiveness of our proposed feature
extraction method. Different diseases have distinctive visual
appearance. Thus, a block of diseased part may be regarded
as a distinct texture pattern. This observation motivates us
to utilize the texture classification algorithm for the Alzhei-
mer’s disease and tumor identification.

3.2.1 ADNI database for Alzheimer’s disease

A total of 100 data sets were examined in this study. All data
sets were selected from the Alzheimer’s disease Neuroimag-
ing Initiative (ADNI) database (www.loni.ucla.edu/ADNI).
The MRI scans were acquired from multiple sites using
either a GE or Siemens or Philips 3T system. High-resolution
T1- weighted volumetric MP-RAGE scans were collected
for each subject, and the MINC format images were down-
loaded from the public ADNI site (http://www.loni.ucla.edu/
ADNI/Data/index.shtml). Parameter values vary depending
on scanning site and can be found at http://www.loni.ucla.
edu/ADNI/Research/Cores/. Out of 100 data sets, 40 belongs
to AD brain T1-weighted MRI and 60 belongs to Normal
brain T1-weighted MRI. From all the data sets, hippocam-
pus is segmented from the coronal slice using the method
adapted in [16]. The segmented hippocampus region is pad-
ded with zeros to make the size of the region into 32 × 32
in order to apply wave atom transform. Then, wave atom
transform is applied to get the transformed image. The Fig. 3
shows the region of interest on AD MRI and normal MRI
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Fig. 3 First row MRI
hippocampus images and
second row corresponding wave
atom transform coefficients (a,
b for AD c, d for normal)

Fig. 4 SVD distribution and
variance of first five SVD of
normal and AD hippocampus
textures
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Table 1 Events that assign TP, FN, TN and FP

Classified as AD Classified as normal

Actually AD TP FN

Actually normal FP TN

and its transformed images. The transformed image pattern
itself shows the discrimination. SVD is applied on the trans-
formed coefficients. The SVD distribution and the variance
of first five SVD is given in Fig. 4. Since the variance of first
five SVD is close to 90 %, first five values are selected for
classification.

To train and test the SVM, out of 40 AD features, 20 AD
features were randomly assigned for training and remaining
20 AD features were assigned for testing and out of 60 Nor-
mal features, 30 Normal features were assigned for training
and remaining 30 Normal features were assigned for testing.

To validate and quantify the effectiveness of the proposed
texture feature extraction, and classification algorithm, four
traditional performance metrics, namely Sensitivity, Accu-
racy, Specificity, and Precision, are measured [17]. Table 1
defines events that assign true positive (TP), false negative
(FN), true negative (TN), and false positive (FP) used in the
performance metrics equations defined as follows:

Precision = TP

TP + FP
and

Sensitivity = TP

TP + FN
(16)

Specificity = TN

FP + TN
and

Accuracy = TP + TN

TP + TN + FP + FN
(17)

The validation parameters Precision, Sensitivity, Speci-
ficity, and Accuracy for wave atom features are 94.7, 90,
96.7, and 94 % respectively. Among the two misclassified
data sets belongs to AD, one is male and another is female
and both are above 85 years old. One normal female aged 85
was misclassified as AD. This shows the wave atom feature
extraction approach has the highest classification rate with
good accuracy and precision.

This method is also compared with the texture features
taken through wavelet transform, GLCM and circular Gabor
filter features. The validation parameters Precision, Sensi-
tivity, Specificity, and Accuracy for wavelet texture features
are 85.7, 90, 90, and 90 % respectively. The 2 misclassified
data sets belonging to AD are from a male and a female
patient above 80 years old. The 3 misclassified data sets
belong to Normal are from two male and a female patients
who are above 85 years old. The performance of the pro-
posed method is better compared to the previous cases. The
validation parameters Precision, Sensitivity, Specificity, and
Accuracy for GLCM are 85, 85, 90, and 88 % respectively.
Here, the 3 misclassified data sets belonging to AD are from
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Fig. 5 ROC curve for the
classifier in wave atom, wavelet
transformed coefficient GLCM
and Gabor filter texture features
of MRI hippocampus
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Fig. 6 First row is the sample
CT images and second row is
the corresponding wave atom
transform coefficients (a, b for
hemangioma c, d for hepatoma)

Fig. 7 SVD distribution and
variance of first five SVD of
hemangioma and hepatoma
textures
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patients above 85 years old, one belongs to male and other
two belong to female patients. The 3 misclassified data sets
belong to Normal are above 85 years old and one belongs to
female and other two belong to male patients. The validation
parameters Precision, Sensitivity, Specificity, and Accuracy
for Gabor filter features are 81, 85, 86.7, and 86 % respec-
tively. Here, the 3 misclassified data sets belonging to AD
are from patients above 85 years old, one belongs to male
and other two belongs to female patients. The 4 misclassi-
fied data sets belong to Normal are above 85 years old and
one belongs to female and other three belong to male patients.
The performances for the four methods are illustrated with
ROC curve in Fig. 5.

3.2.2 Liver tumor classification on CT images

A total of 90 abdominal CT images considered in this work
are collected from Regional Cancer Centre, Chennai on GE

CT Scanner. Of which, 50 belong to benign (hemangioma)
and other 40 belong to malignant (hepatoma) cases. All
the used samples are of size 512 × 512 and slice thick-
ness of 5 mm. A region of interest of 32 × 32 sizes within
the segmented tumor region is cropped to apply wave atom
transform-based feature extraction. Figure 6 shows the wave
atom–transformed sub-band coefficients of the tumor region.
As in Sect. 3.2.1, the SVD is applied to the sub-band coef-
ficients. The SVD distribution and the variance of first five
SVD are given in Fig. 7. Since the variance of first five SVD
is between 50 and 90 %, the first five values are selected for
classification using the same SVM classifier. Of the total 90
test data, 45 images are used for training the classifier and
the other 45 are used for testing. The training set and test-
ing sets contain 25 hemangioma and 20 hepatoma images,
respectively. The classification results are evaluated using the
performance measures used in Sect. 3.2.

The validation performance measures of the proposed
method are compared with the performance measures

123



SIViP (2014) 8:923–930 929

Table 2 Performance measures
comparison of the four methods Accuracy (%) Specificity (%) Sensitivity (%) Precision (%)

Wave atom 93.3 96 90 94.7

Wavelet transform 88.9 92 85 89.5

GLCM 84.4 84 85 81

Gabor filter 80 80 80 76.2

Fig. 8 ROC curve for the
classifier in wave atom, wavelet
transformed coefficient, GLCM
and Gabor filter texture features
of liver CT images

0 0.5 1
0

0.5

1

False positive rate 

T
ru

e 
po

si
tiv

e 
ra

te
 

AUC 0.904

0 0.5 1
0

0.5

1

False positive rate 

T
ru

e 
po

si
tiv

e 
ra

te

AUC 0.856

0 0.5 1
0

0.5

1

False positive rate 

T
ru

e 
po

si
tiv

e 
ra

te
 

AUC 0.852

0 0.5 1
0

0.5

1

False positive rate 

T
ru

e 
po

si
tiv

e 
ra

te
 

AUC 0.808

determined with the texture features calculated using wave-
let transform, GLCM and circular Gabor filter features. The
comparative performance measures are given in Table 2.

The performance measures comparison shows that the
classification accuracy has considerably increased by the
proposed method than the wavelet, GLCM and Gabor filter
methods. The accuracy has increased by 4.4 % than wave-
let, 8.9 % than GLCM, and 13.3 % than Gabor filter features.
Among the 25 hemangioma features used for testing, 24 are
classified correctly as hemangioma while 1 of them is mis-
classified as hepatoma. Of the 20 hepatoma cases, 18 are
classified as hepatoma while the rest is classified as heman-
gioma using wave atom-based feature extraction. The mis-
classification rate using wave atom approach is much smaller
than wavelet, GLCM, and Gabor filter feature approaches.
The amount of misclassification using wavelet transform is
higher than wave atom but lesser than GLCM-based feature
extraction method. There are considerable improvements in
other measures also. This is mainly due to the wave atom
transform analysis-based texture features of tumor that has
the ability to adapt to arbitrary local directions of pattern, and
to sparsely represent anisotropic patterns. The ROC curves
for the 4 methods of liver tumor diagnosis are shown in Fig. 8.
The area under the curve (AUC) for the proposed method is
greater than other techniques.

4 Conclusion

A useful texture feature extraction algorithm has been pre-
sented in this paper. The texture features are extracted using
the wave atom transform and is significant for characterizing
a texture. The effectiveness of the proposed features has been
demonstrated in the texture classification experiments. It is
proved that the wave atom transform is not only useful for the
classification of synthetic features but also has the ability to
discriminate the Alzheimer’s disease using MRI brain images

and liver tumor identification using CT images. Wave atom
transform-based texture classification performance measures
are high in comparison with wavelet transform, GLCM, and
Gabor filter-based texture feature classification. Hence, wave
atom transform-based feature extraction can be used for
detecting and diagnosing several diseases.
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